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ABSTRACT 

The study of topological indices of graphs and therefore of carbon nanotubes is a very important part of graph 

theory and thus nanotechnology. A topological index is a real number related to a graph. There are several 

topological indices used in chemical graph theory, however, a very few of them are found useful in 

nanotechnology for solving structural problems related to carbon nanotubes. In this article a brief summary on 

the development of Wiener, Szeged and Padmakar-Ivan indices for carbon nanotubes is given. 

Keywords : Topological index, Benzenoid graph, Carbon Nanotubes, Wiener index, Szeged index, 

Padmakar−Ivan index. 

 

I. INTRODUCTION 

 

Carbon nanotubes (CNT) have become the subject of 

intense investigation since their discovery [21]. This is 

due to the unique behaviour of CNT along with their 

remarkable electrical, chemical, biomedical, medicinal, 

mechanical and structural properties. A topological 

index is a numeric quantity derived on the structural 

graph of a molecule i.e., a nanostructure. Recent 

studies of the application of graph theory and 

subsequent methods for the estimation of topological 

indices, not only helped the nanotechnologists to 

investigate aforementioned versatile properties of 

carbon nanotubes but helped them in preparing 

unknown carbon nanotubes with still better 

properties. This is due to the fact that most of the 

carbon nanotubes that are build, have polycyclic 

benzenoid hydrocarbon as their basic units. 

 

The literature survey has shown that topological 

indices like Weiner [25], Szeged [14, 15, 20, 22, 23], 

Balaban [5] and Pardmakar-Ivan (PI) [1-4, 6-8, 13, 24, 

26]  indices have been used in solving the problems 

related to carbon nanotubes. Thus, in the next section 

of the paper, we give a brief survey of few of these 

indices for a variety of carbon nanotubes, beginning 

with basic definitions, properties and the graph 

theoretical notations used for the calculations of these 

indices.  

 

II.  MAIN RESULTS AND DISCUSSIONS  

A. Weiner Index (W): 

The Wiener index W, introduced in 1947 by the 

chemist Harold Wiener [25]. In graph theoretical 

language, it is equal to the count of all shortest 

distances in a graph. Thus, the Wiener index W = W 

(G) was first defined, for a tree G = T, by the following 

expression: 

   W = W (T) = 1/2* d (i, j),                              (1) 

Where d(i, j) is the distance between the vertices u 

and v in G and the summation going over all pairs (i, j) 

of vertices i, jV (G), or by 

   W = W (T) = n (i (e))*n (j (e)),                      (2) 
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Where, n(i(e)) and n(j(e)) are the number of vertices 

of G lying on two sides of the edge e.  

1) Weiner index of Armchair Polyhex Nanotubes: 

Diudea, Stefu, Parr and John [9] have described a 

method for computing Weiner index of arm chair 

nanotubes. In doing so, they have considered single-

walled nanotubes (SWNTs). They considered 

hexagonal armchair lattice TUVC6[c, n] as shown in 

the Fig. 1: 

 

Figure 1: An armchair polyhex lattice 

and choose a reference vertex v from which the 

topological distances to all other vertices are evaluated. 

The sum of such distances, on each level, is given in 

Fig. 1 as Si. Then, the Weiner index of armchair 

nanotubes, having q ≥ p is given by the following 

expression: 

WTUVC6(p, q, z) = 

 (p z) (p z 1) z 2 2p
[12( 1) pq 3( 1) 3( 1) 12q z

12

                                        

2 (p z) 2 (p z 1) 2 312q z 12( 1) p 12z q 6( 1) p 8pq          

 2 3 2 2 (p z)28pq 6q 18q 8p q 12p q 12( 1) q                                                                                                                                                                     

 (p z 1) 2 2 (1 z) 46( 1) q 24qz 12p 14p 6( 1) q 2p           

2) Weiner index of zig-zag TUHC6[c, n] Nanotubes: 

Following the methodology given above, the Diudea 

and John computed Weiner index of zig-zag TUHC6 [c, 

n] [8], the lattice of which is shown in the Fig. 2: 

 

Figure 2 : A zig-zag polyhex lattice 

In this case they have computed (a) Weiner index of 

long tubes q ≥ p as well as (b) short tubes q ≤ p. The 

expressions used for these calculations are mentioned 

below: 

(a) Long Tubes 

WTUHC6(p, q) = 
2

3 2 3p
[8q 4p q 6q p p]

6
     

(b) Short Tubes  

WTUHC6(p, q) = 3 2 2pq
[q 4pq 6p q q 4p]

6
     

For q = 1 and p ≥ 2, the formula for simple cycles on 

2p vertices is given as W(C2p) = p3.  

B. Szeged Index (Sz): 

The Szeged index (Sz) is another topological index, in 

acquaintance with Gutman [11] and Gutman-

Khadikar [14]. The Szeged index Sz (G) of graph G is 

defined as:  

               Sz (G) = u v

e uv E(G)

[n (e).n (e)]
 

               (3)   

Where, nu(e) is the number of vertices of G lying 

closer to u and nv(e) is the number of vertices of G 

lying closer to v. Note that vertices equidistant from u 

and v are not taken into account. The main advantage 

of the Szeged index is that it is a modification of 

Wiener index for cyclic graphs; otherwise, it coincides 

with the Wiener index. The Szeged index of some 

nanostructures is discussed in the following sub-

section: 

1) Szeged index of Armchair Polyhex Nanotubes: 

Eliasi and Taeri [10] have computed an exact 

expression for Szeged index of TUVC6[2p, q], the 

armchair polyhex nanotubes, using a theorem of 

Dobrynin and Gutman [12]. This tube is as shown in 

the Fig. 3: 

 
Figure 3 : An armchair polyhex nanotube 
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The lattice of TUVC6[2p, q] with p = 5 and q = 7 is 

shown in the Fig. 4: 

 

Figure 4 : A TUVC6[2p, q] lattice with p = 5 and q = 7. 

The Sz index is given by the following expression: 

Sz(TUVC6[2p, q]) =  

5 4 4 3 2 3 3 2 21
p(12p 30p 80pq 120qp 160q p 60q p 80p q

60
     

2 q 4 5 q 1 3120q p 30p( 1) 18p 20q p 33q 2q 15( 1) q 20q )         

if p < q < 2p – 2 and p is even. Here, 2p is 

circumference and q is length. 

2) Szeged index of HC5C7 [r, p] Nanotube: 

A C5C7 net is a trivalent decoration made by 

alternating pentagons C5 and heptagons C7. It can 

cover either a cylinder or a torus. Iranmanesh and 

Takravesh [13] have computed Szeged index of the 

nanotube shown in Fig.5:  

 

Figure 5 : A HC5C7 [4, 8] nanotube with p = 8, r = 4. 

They have given a computer program for computing 

Szeged index of this nanotube. 

C. Padmakar Ivan Index (PI):  

For the reason of the coincidence of Wiener and 

Szeged indices in case of trees Khadikar [16] 

introduced another Szeged / Wiener –like index and 

named it Padmakar-Ivan index and abbreviated as PI.  

The Padmakar-Ivan index (PI) index of the graph G is 

defined as: 

PI = PI (G) = ∑ [neu (e|G) + nev (e|G)]                 (4) 

Where, neu(e|G) is the number of edges lying closer to 

the vertex u than the vertex v; nev(e|G), is the number 

of edges lying closer to the vertex v than the vertex u. 

Edges equidistant from both ends of the edge e = uv 

are not counted. And the summation goes over all the 

edges of G. 

Or, the PI index of a bipartite sco graph G is defined 

by (s = 1, 2, …, c) 

PI(G) =  m(G)2 – ms(G)2                                   (5) 

Large amount of work has been done on the 

application of PI index in nanotubes since then. The 

PI index of some nanostructures is discussed in the 

following sub-section: 

1) PI index of zig-zag Polyhex Nanotubes: 

Ashrafi and Loghman [2] have computed PI index of 

zig-zag polyhex nanotubes T = TUHC6 [2p, q] as 

shown in the Fig. 6: 

 

Figure 6: A zig-zag TUHC6 [2p, q] 

The polyhex lattice of this tube is given in Fig. 7: 

 

Figure 7: A zig-zag polyhex lattice 

The PI index of the zig-zag polyhex nanotubes is 

computed by using the following expression: 

PI(TUHC6 (2p, q)) =  
2 2 2

2 2

p (9q 7q 2) 4pq , if q p

p (9q 15q 4p 2) 4pq, if q p

    


    
 

2) PI index of TUC4H8 (S) Carbon Nanotubes: 
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Ashrafi and Loghman [3] have also computed PI index 

of TUC4H8(S) carbon nanotubes given in Fig. 8: 

 

Figure 8: A TUC4H8(S) carbon nanotube 

Lattice with p = 4 and q = 8 is given in Fig. 9 below: 

 

Figure 9: A TUC4H8(S) lattice with p = 4 and q = 8. 

The following expression is proposed for the 

computation of PI index of TUC4H8 (S) [4p, q]: 

          PI(TUC4H8 (S) [4p, q]) = 
X, if q p

Y, if q p





 

where, X = 36p2q2 – 28p2q + 8p2 – 8pq2 

and Y = 36p2q2 – 36p2q – 4pq2 + 4pq + 4p3 + 4p2. 

3) PI index of Armchair Polyhex Nanotubes: 

Once again, the same authors, namely Ashrafi and 

Loghman [4] have computed PI index of armchair 

polyhex nanotubes. These authors have considered T 

= TUVC6 [2p, q] as arbitrary armchair polyhex 

nanotubes, as shown in the Fig. 10: 

 

Figure 10: An armchair TUVC6 [20, n] 

The PI index of this nanotube is computed as: 

PI(TUVC6 [2p, q]) =  

X p, if q p 1
, 2 | p &2 | q 1

Y p, if q p 1

X, if q p 1
, otherwise

Y, if q p 1

   


   


 
  

 

where, X = 9p2q2 – 12p2q – 5pq2 + 8pq + 4p2 – 4p 

and Y = 9p2q2 – 20p2q – pq2 + 4pq + 4p3 + 8p2 – 4p. 

4) PI index of HAC5C6C7 Nanotubes:  

Yousefi-Azari, Bahrami and Ashrafi [26] have 

computed PI index of HAC5C6C7 nanotubes and 

nanotori. The two-dimensional lattice of HAC5C6C7 

[16, q] nanotube is shown in Fig. 11:  

 

Figure 11: The 2-Dimensional lattice of the HAC5C6C7 

[16, 8] nanotube 

 

The PI index of this tube is computed as: 

         PI (HAC5C6C7) = 
2

2

2080q 160q 2 | q

2080q 376q 2|q

  



 

5) PI index of a nanotube SC4C8[q, 2p]:  

Deng and Ilou [6] have computed PI index of a 

nanotube        G = SC4C8 [q, 2p], with q rows and 2p 

columns. They considered three types of G: 

Type I:  G = SC4C8 [q, 2p]  

Type II:  If all the edges on the open ends are the 

edges of C8 or C4 

Type III: Otherwise.  

Note that G = SC4C8 [q, 2p] is a Type III nanotube if 

and only if q is odd. Nanotubes of Type I and III are 

shown in Fig. 12: 
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Figure 12: (a) A Type-I Nanotube and (b) A Type-III 

Nanotube 

If G is a Type I, then we have 

PI(G) = 
2 2 2 2 2

2 2 2 2 2 2

9p q 14p q 8p 2pq , if q 2p

9p q 18p q 4p 2pq pq 4p , if q 2p 2

    


      
 

If G is a Type II, then 

PI(G) =  
2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 3 2

2 2 2 2 3

9p q 14p q 2pq 4pq 4p 4p, if q 2p 2,q 0

9p q 14p q 2pq 4pq 4p 4p, if q 2p 2,q 2p is odd.

9p q 14p q 2pq 4pq 4p 8p, if q 2p 2,q 2p is even.

9p q 18p q pq 4p 2pq 8p 4p, if q 2p 4,q 0.

9p q 18p q pq 4p 2

       

       

       

        

    2

2 2 2 2 3 2

pq 8p 4p, if q 2p 4,q 2p is odd.

9p q 18p q pq 4p 2pq 8p 4p, if q 2p 4,q 2p is even.







     


        

If G is a Type III, then 

PI(G) = 

 

2 2 2 2 2

2 2 2 2 2

2 2 2 2 3 2

2 2 2 2 3 2

9p q 14p q pq 2pq 6p p, if q 2p 1,p isodd.

9p q 14p q pq 2pq 6p 2p, if q 2p 1,p iseven.

9p q 18p q pq 4p 2pq 6p 2p, if q 2p 3,p isodd.

9p q 18p q pq 4p 2pq 6p 3p, if q 2p 3,p isodd.

       


      


       
        

 

6) PI index of TUVC6 [2p, q]: 

A formula for calculating PI index of TUVC6[2p, q] is 

given by Deng [7]. In the following Fig. 13, G = 

TUVC6[2p, q] denotes an armchair polyhex nanotube 

with p = 6 and q = 9. 

 

Figure 13: G = TUVC6[2p, q] with p = 6 and q = 9 

The PI index of G = TUVC6[2p, q] is given as: 

(i) If q is even, then 

PI(G) =
2 2 2 2 2

2 2 2 3 2 2

9p q 12p q 4p 5pq 8pq 4p, if q p

9p q 20p q 4p pq 8p 4pq 4p, if q p 1

      


       
 

(ii) If q is odd, then 

PI(G) =  
2 2 2 2 2

2 2 2 3 2 2

2 2 2 2 2

2 2 2 3 2 2

9p q 12p q 4p 5pq 8pq 4p, if q p and p is odd.

9p q 20p q 4p pq 8p 4pq 4p, if q p 1 and p is odd.

9p q 12p q 4p 5pq 8pq 3p, if q p and p is even.

9p q 20p q 4p pq 8p 6pq 5p, if q p 1 and p is even

      


       


     
        

 

7)  PI indices of VC5C7 [p, q] and HC5C7 [p, q] 

Nanotubes: 

Iranmanesh and Alizadeh [13] have proposed GAP 

program for computing PI indices of any graph, based 

on an algorithm and given expressions for the 

calculation of the same, for graphs VC5C7[p, q] and 

HC5C7[p, q] acting as nanotubes. The nanotube 

VC5C7[p, q] is depicted in the Fig. 14: 

 

Figure 14: A VC5C7 [4, 2] nanotube 

Similarly, the nanotube HC5C7 [p, q] is shown in the 

Fig. 15: 

 

Figure 15: A HC5C7 [4, 2] nanotube 

8) Vertex PI index of TUC4C8(S), TUC4C8(R) and 

HAC5C7[r, p] Nanotubes: 

Sousaraei, Mahmiani and Khormali [24] have 

computed vertex PI indices of three nanotubes viz 

TUC4C8(S), TUC4C8(R) and HAC5C7[r, p]: 
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(i) Vertex PI index of TUC4C8 (S): 

PIv(TUC4C8 (S)) = 
e E(G)

4pk


  

             = (4pk)(4pk) 

(ii) Vertex PI index of TUC4C8 (R): 

(a) If p is even, PIv(TUC4C8 (R)) = 
e E(G)

4pk


  

                  = (4pk)(6pk – p) 

(b) If p is odd, PIv(TUC4C8 (R)) =  

         = 
ij ije E(G)/{e S |1 i k, 1 j p} {e S |1 i k,1 j p}

4pk (4pk p)
          

    

         = (4pk)(2pk – p) + (4pk – p)(4pk) 

(iii) Vertex PI index of HAC5C7 [r, p]: 

For even p ≥ 6 

PIv(HAC5C7 [r, p]) =  

= 

k k 1

1 2 2

m 1 m 1

p 2 p 2k k 1

2 3 2 2 2 2

m 1 m p 2 m 1 m p 2 1

p 2 k p 2k k 1

2 3 2 2 2 2

m 1 m k p 2 1 m p 2 1 m k p 2 1

p
S p(z t ), k

2

p
S S p(z t ) p(z t ) , k p

2

S S p(z t ) p(z t ) , k p



 



    

 

        


  




      


      


 

   

   

 

For odd p ≥ 7, 

PIv(G) =  

 
 

III. CONCLUSION 

 

The paper describes the basic definitions, properties 

and calculations of the topological indices these for a 

variety of carbon nanotubes. We surveyed nearly all 

results related to Weiner, Szeged and PI-indices for 

carbon nanotubes. It was found that a large amount of 

work has been done using PI-Index as compared to 

W- and Sz-index. In recent years, several papers on 

methods for computing these indices of molecular 

graphs have been published. 
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